Bio-Connect

anti-alpha, beta Tubulin dimer antibody [TU-10]

Research Use Only
ARG65548
Arigo Biolaboratories
ApplicationsImmunoFluorescence, Western Blot, ImmunoCytoChemistry
Product group Antibodies
ReactivityPorcine
TargetTUBA1B
Price on request
Packing Size
Large volume orders?
Order with a bulk request

Overview

  • Supplier
    Arigo Biolaboratories
  • Product Name
    anti-alpha, beta Tubulin dimer antibody [TU-10]
  • Delivery Days Customer
    23
  • Applications
    ImmunoFluorescence, Western Blot, ImmunoCytoChemistry
  • Certification
    Research Use Only
  • Clonality
    Monoclonal
  • Clone ID
    TU-10
  • Concentration
    1 mg/ml
  • Conjugate
    Unconjugated
  • Estimated Purity
    >95%
  • Gene ID733594
  • Target name
    TUBA1B
  • Target description
    tubulin alpha 1b
  • Target synonyms
    alpha-tubulin ubiquitous; TUBA3; tubulin alpha 3; tubulin alpha-1B chain; tubulin alpha-ubiquitous chain; tubulin K-alpha-1
  • Host
    Mouse
  • Isotype
    IgM
  • Scientific Description
    The microtubules are intracellular dynamic polymers made up of evolutionarily conserved polymorphic alpha/beta-Tubulin heterodimers and a large number of microtubule-associated proteins (MAPs). The microtubules consist of 13 protofilaments and have an outer diameter 25 nm. Microtubules have their intrinsic polarity; highly dynamic plus ends and less dynamic minus ends. Microtubules are required for vital processes in eukaryotic cells including mitosis, meiosis, maintenance of cell shape and intracellular transport. Microtubules are also necessary for movement of cells by means of flagella and cilia. In mammalian tissue culture cells microtubules have their minus ends anchored in microtubule organizing centers (MTOCs). The GTP (guanosintriphosphate) molecule is an essential for Tubulin heterodimer to associate with other heterodimers to form microtubule. In vivo, microtubule dynamics vary considerably. Microtubule polymerization is reversible and a populations of microtubules in cells are on their minus ends either growing or shortening - this phenomenon is called dynamic instability of microtubules. On a practical level, microtubules can easily be stabilized by the addition of non-hydrolysable analogues of GTP (eg. GMPPCP) or more commonly by anti-cancer drugs such as Taxol. Taxol stabilizes microtubules at room temperature for many hours. Using limited proteolysis by enzymes both Tubulin subunits can be divided into N-terminal and C-terminal structural domains.The alpha-Tubulin (relative molecular weight around 50 kDa) is globular protein that exists in cells as part of soluble alpha/beta-Tubulin dimer or it is polymerized into microtubules. In different species it is coded by multiple Tubulin genes that form Tubulin classes (in human 6 genes). Expressed Tubulin genes are named Tubulin isotypes. Some of the Tubulin isotypes are expressed ubiquitously, while some have more restricted tissue expression. Alpha-Tubulin is also subject of numerous post-translational modifications. Tubulin isotypes and their posttranslational modifications are responsible for multiple Tubulin charge variants - Tubulin isoforms. Heterogeneity of alpha-Tubulin is concentrated in C-terminal structural domain. The beta-Tubulin (relative molecular weight around 50 kDa) is counterpart of alpha-Tubulin in Tubulin heterodimer, it is coded by multiple Tubulin genes and it is also posttranslationally modified. Heterogeneity of subunit is concentrated in C-terminal structural domain.
  • Reactivity
    Porcine
  • Storage Instruction
    -20°C
  • UNSPSC
    12352203